skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Altowim, Yasser"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Emerging domains, such as sensor-driven smart spaces and social media analytics, require incoming data to be enriched prior to its use. Enrichment often consists of machine learning (ML) functions that are too expensive/infeasible to execute at ingestion. We develop a strategy entitled Just-in-time ENrichmeNt in quERy Processing (JENNER) to support interactive analytics over data as soon as it arrives for such application context. JENNER exploits the inherent tradeoffs of cost and quality often displayed by the ML functions to progressively improve query answers during query execution. We describe how JENNER works for a large class of SPJ and aggregation queries that form the bulk of data analytics workload. Our experimental results on real datasets (IoT and Tweet) show that JENNER achieves progressive answers performing significantly better than the naive strategies of achieving progressive computation. 
    more » « less
  2. Social media analysis over blogs (such as tweets) often requires determining top-k mentions of a certain category (e.g., movies) in a collection (e.g., tweets collected over a given day). Such queries require entity linking (EL) function to be executed that is often expensive. We propose TQEL, a framework that minimizes the joint cost of EL calls and top-k query processing. The paper presents two variants - TQEL-exact and TQEL-approximate that retrieve the exact / approximate top-k results. TQEL-approximate, using a weaker stopping condition, achieves significantly improved performance (with the fraction of the cost of TQEL-exact) while providing strong probabilistic guarantees (over 2 orders of magnitude lower EL calls with 95% confidence threshold compared to TQEL-exact). TQEL-exact itself is orders of magnitude better compared to a naive approach that calls EL functions on the entire dataset. 
    more » « less